Smith, I. Mycobacterium tuberculosis Pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16463–496 (2003).
Article CAS Google Scholar
Leigh-de Rapper, S. & van Vuuren, SF Odoriferous therapy: A review identifying essential oils against pathogens of the respiratory tract. Chem Biodivers 17(6), e2000062 (2020).
Article CAS Google Scholar
World Health Organization Global Tuberculosis Report 2022; World Health Organization: Geneva, 2022.
Mohan, A. Kumar, DP, & Harikrishna, J. Newer anti-TB drugs and drug delivery systems. in Medicine Update, (Muruganathan A. Ed). Jaypee Brothers Medical Publishers (for the Association of Physicians of India): New Delhi, 2013; pp 388–392.
Nair, SS, Gaikwad, SS, Kulkarni, SP & Mukne, AP Allium sativum constituents exhibit anti-tubercular activity in vitro and in RAW 2647 mouse macrophage cells infected with mycobacterium tuberculosis H37Rv. Pharmacogn. Mag. 13S209–S215 (2017).
Article Google Scholar
Oosthuizen, C., Arbach, M., Meyer, D., Hamilton, C. & Lall, N. Diallyl polysulfides from allium sativum as immunomodulators, hepatoprotectors, and antimycobacterial agents. J. Med. Food twenty685–690 (2017).
Article CAS Google Scholar
Corzo-Martínez, M., Corzo, N. & Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 18609–625 (2007).
Article Google Scholar
Bastaki, SMA, Ojha, S., Kalasz, H. & Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 4764301–4321 (2021).
Article CAS Google Scholar
Block, E. Chemistry of garlic and onions. Sci. Am. 252114–119 (1985).
Article CAS Google Scholar
Harris, JC, Cottrell, SL, Plummer, S. & Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 57282–286 (2001).
Article CAS Google Scholar
Hannan, A. et al. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. Pak. J.Pharm. Sci. 2481–85 (2011).
Google Scholar
Rao, RR, Rao, SS, Natarajan, S. & Venkataraman, PR Inhibition of Mycobacterium tuberculosis by garlic extract. Nature 157441 (1946).
Article ADS CAS Google Scholar
Delaha, EC & Garagusi, VF Inhibition of mycobacteria by garlic extract (Allium sativum ). Antimicrobial Agents Chemother. 27485–486 (1985).
Article CAS Google Scholar
Naganawa, R. et al. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl. Environ. Microbiol. 624238–4242 (1996).
Article ADS CAS Google Scholar
Dibua, UE, Odo, GE, Udengwu, S. & Esimone, CO Cytotoxicity and antitubercular activity of Allium sativum and lantana camara against mycobacterial isolates from people living with HIV/AIDS. Int. J. Infectious Dis. 81–10 (2010).
Google Scholar
Satyal, P., Craft, JD, Dosoky, NS & Setzer, WN The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 663 (2017).
Article Google Scholar
Ashraf, S.A. et al. GC-MS analysis of commercially available Allium sativum and Trigonella foenum-graecum essential oils and their antimicrobial activities. J Pure Appl Microbiol 132545–2552 (2019).
Article CAS Google Scholar
Rodrigue, S., Provvedi, R., Jacques, PE, Gaudreau, L. & Manganelli, R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 30(6), 926–941 (2006).
Article CAS Google Scholar
Chauhan, R. et al. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat. Commun. 711062 (2016).
Article ADS CAS Google Scholar
Grigorova, IL, Phleger, NJ, Mutalik, VK & Gross, CA Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. Proc. Natl. Academic Sci. USA 1035332–5337 (2006).
Article ADS CAS Google Scholar
Gruber, TM & Gross, CA Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57441–466 (2003).
Article CAS Google Scholar
Manganelli, R. et al. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J. Bacteriol. 186895–902 (2004).
Article CAS Google Scholar
Karp, P.S. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. twenty(4), 1085–1093 (2019).
Article CAS Google Scholar
Ortalo-Magne, A. et al. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178(2), 456–461 (1996).
Article CAS Google Scholar
Crellin, PK, Luo, CY & Morita, YS Metabolism of plasma membrane lipids in mycobacteria and corynebacteria. in Lipid Metabolism (ed. Baez, RV) (IntechOpen Limited, 2013).
Google Scholar
Haites, RE, Morita, YS, McConville, MJ & Billman-Jacobe, H. Function of phosphatidylinositol in mycobacteria. J. Biol. Chem. 280(12), 10981–10987 (2005).
Article CAS Google Scholar
Crick, DC, Chatterjee, D., Scherman, MS, & MR, M. Structure and biosynthesis of the mycobacterial cell wall. in Comprehensive Natural Products IIVol. 6. Elsevier (2010).
Chiaradia, L. et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 712807 (2017).
Article ADS Google Scholar
Sartain, MJ, Dick, DL, Rithner, CD, Crick, DC & Belisle, JT Lipidomic analyzes of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J. Lipid Res. 5861–672 (2011).
Article Google Scholar
Lau, S.K. et al. Identification of specific metabolites in culture supernatant of Mycobacterium tuberculosis using metabolomics: exploration of potential biomarkers. Emerg. Microbes Infect. 41 (2015).
Article Google Scholar
Buter, J. et al. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat. Chem. Biol. fifteen889–899 (2019).
Article CAS Google Scholar
Young, D.C. et al. In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection. Chem Biol 22516–526 (2015).
Article CAS Google Scholar
Cremlyn, R.J. An Introduction to Organosulfur Chemistry (Wiley, 1996).
Google Scholar
Ghanem, M. et al. Heterologous production of 1-Tuberculosinyladenosine in Mycobacterium kansasii models pathoevolution towards the transcellular lifestyle of Mycobacterium tuberculosis. mBio eleven10 (2020).
Article Google Scholar
Bijmans, MFM, Buisman, CJN, Meulepas, RJW & Lens, PNL Sulfate reduction for Inorganic waste and process water treatment. in Comprehensive Biotechnology (ed. Murray, MY) 435–446 (Academic Press, 2011).
Chapter Google Scholar
Tsuchiya, H. & Nagayama, M. Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity. J. Biomed. Sci. fifteen653–660 (2008).
Article CAS Google Scholar
Sieniawska, E., Michel, P., Mroczek, T., Granica, S. & Skalicka-Woźniak, K. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo. Food Chem. Toxicol. 125161–169 (2019).
Article CAS Google Scholar
Sawicki, R. et al. Exposure to Nepalese propolis alters the metabolic state of Mycobacterium tuberculosis. Front. Pharmacol. 13929476 (2022).
Google Scholar
Sieniawska, E., Sawicki, R., Truszkiewicz, W., Marchev, AS & Georgiev, MI Usnic acid treatment changes the composition of Mycobacterium tuberculosis cell envelope and alters bacterial redox status. mSystems 6(3), e00097 (2021).
Article CAS Google Scholar
Sambandan, D. et al. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. mBio 410 (2013).
Article Google Scholar