Sulphides from garlic essential oil dose-dependently change the distribution of glycerophospholipids and induce N6-tuberculosinyladenosine formation in mycobacterial cells

Smith, I. Mycobacterium tuberculosis Pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16463–496 (2003).

Article CAS Google Scholar

Leigh-de Rapper, S. & van Vuuren, SF Odoriferous therapy: A review identifying essential oils against pathogens of the respiratory tract. Chem Biodivers 17(6), e2000062 (2020).

Article CAS Google Scholar

World Health Organization Global Tuberculosis Report 2022; World Health Organization: Geneva, 2022.

Mohan, A. Kumar, DP, & Harikrishna, J. Newer anti-TB drugs and drug delivery systems. in Medicine Update, (Muruganathan A. Ed). Jaypee Brothers Medical Publishers (for the Association of Physicians of India): New Delhi, 2013; pp 388–392.

Nair, SS, Gaikwad, SS, Kulkarni, SP & Mukne, AP Allium sativum constituents exhibit anti-tubercular activity in vitro and in RAW 2647 mouse macrophage cells infected with mycobacterium tuberculosis H37Rv. Pharmacogn. Mag. 13S209–S215 (2017).

Article Google Scholar

Oosthuizen, C., Arbach, M., Meyer, D., Hamilton, C. & Lall, N. Diallyl polysulfides from allium sativum as immunomodulators, hepatoprotectors, and antimycobacterial agents. J. Med. Food twenty685–690 (2017).

Article CAS Google Scholar

Corzo-Martínez, M., Corzo, N. & Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 18609–625 (2007).

Article Google Scholar

Bastaki, SMA, Ojha, S., Kalasz, H. & Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 4764301–4321 (2021).

Article CAS Google Scholar

Block, E. Chemistry of garlic and onions. Sci. Am. 252114–119 (1985).

Article CAS Google Scholar

Harris, JC, Cottrell, SL, Plummer, S. & Lloyd, D. Antimicrobial properties of Allium sativum (garlic). Appl. Microbiol. Biotechnol. 57282–286 (2001).

Article CAS Google Scholar

Hannan, A. et al. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. Pak. J.Pharm. Sci. 2481–85 (2011).

Google Scholar

Rao, RR, Rao, SS, Natarajan, S. & Venkataraman, PR Inhibition of Mycobacterium tuberculosis by garlic extract. Nature 157441 (1946).

Article ADS CAS Google Scholar

Delaha, EC & Garagusi, VF Inhibition of mycobacteria by garlic extract (Allium sativum ). Antimicrobial Agents Chemother. 27485–486 (1985).

Article CAS Google Scholar

Naganawa, R. et al. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl. Environ. Microbiol. 624238–4242 (1996).

Article ADS CAS Google Scholar

Dibua, UE, Odo, GE, Udengwu, S. & Esimone, CO Cytotoxicity and antitubercular activity of Allium sativum and lantana camara against mycobacterial isolates from people living with HIV/AIDS. Int. J. Infectious Dis. 81–10 (2010).

Google Scholar

Satyal, P., Craft, JD, Dosoky, NS & Setzer, WN The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 663 (2017).

Article Google Scholar

Ashraf, S.A. et al. GC-MS analysis of commercially available Allium sativum and Trigonella foenum-graecum essential oils and their antimicrobial activities. J Pure Appl Microbiol 132545–2552 (2019).

Article CAS Google Scholar

Rodrigue, S., Provvedi, R., Jacques, PE, Gaudreau, L. & Manganelli, R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 30(6), 926–941 (2006).

Article CAS Google Scholar

Chauhan, R. et al. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat. Commun. 711062 (2016).

Article ADS CAS Google Scholar

Grigorova, IL, Phleger, NJ, Mutalik, VK & Gross, CA Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. Proc. Natl. Academic Sci. USA 1035332–5337 (2006).

Article ADS CAS Google Scholar

Gruber, TM & Gross, CA Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57441–466 (2003).

Article CAS Google Scholar

Manganelli, R. et al. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J. Bacteriol. 186895–902 (2004).

Article CAS Google Scholar

Karp, P.S. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. twenty(4), 1085–1093 (2019).

Article CAS Google Scholar

Ortalo-Magne, A. et al. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178(2), 456–461 (1996).

Article CAS Google Scholar

Crellin, PK, Luo, CY & Morita, YS Metabolism of plasma membrane lipids in mycobacteria and corynebacteria. in Lipid Metabolism (ed. Baez, RV) (IntechOpen Limited, 2013).

Google Scholar

Haites, RE, Morita, YS, McConville, MJ & Billman-Jacobe, H. Function of phosphatidylinositol in mycobacteria. J. Biol. Chem. 280(12), 10981–10987 (2005).

Article CAS Google Scholar

Crick, DC, Chatterjee, D., Scherman, MS, & MR, M. Structure and biosynthesis of the mycobacterial cell wall. in Comprehensive Natural Products IIVol. 6. Elsevier (2010).

Chiaradia, L. et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 712807 (2017).

Article ADS Google Scholar

Sartain, MJ, Dick, DL, Rithner, CD, Crick, DC & Belisle, JT Lipidomic analyzes of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J. Lipid Res. 5861–672 (2011).

Article Google Scholar

Lau, S.K. et al. Identification of specific metabolites in culture supernatant of Mycobacterium tuberculosis using metabolomics: exploration of potential biomarkers. Emerg. Microbes Infect. 41 (2015).

Article Google Scholar

Buter, J. et al. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat. Chem. Biol. fifteen889–899 (2019).

Article CAS Google Scholar

Young, D.C. et al. In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection. Chem Biol 22516–526 (2015).

Article CAS Google Scholar

Cremlyn, R.J. An Introduction to Organosulfur Chemistry (Wiley, 1996).

Google Scholar

Ghanem, M. et al. Heterologous production of 1-Tuberculosinyladenosine in Mycobacterium kansasii models pathoevolution towards the transcellular lifestyle of Mycobacterium tuberculosis. mBio eleven10 (2020).

Article Google Scholar

Bijmans, MFM, Buisman, CJN, Meulepas, RJW & Lens, PNL Sulfate reduction for Inorganic waste and process water treatment. in Comprehensive Biotechnology (ed. Murray, MY) 435–446 (Academic Press, 2011).

Chapter Google Scholar

Tsuchiya, H. & Nagayama, M. Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity. J. Biomed. Sci. fifteen653–660 (2008).

Article CAS Google Scholar

Sieniawska, E., Michel, P., Mroczek, T., Granica, S. & Skalicka-Woźniak, K. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo. Food Chem. Toxicol. 125161–169 (2019).

Article CAS Google Scholar

Sawicki, R. et al. Exposure to Nepalese propolis alters the metabolic state of Mycobacterium tuberculosis. Front. Pharmacol. 13929476 (2022).

Google Scholar

Sieniawska, E., Sawicki, R., Truszkiewicz, W., Marchev, AS & Georgiev, MI Usnic acid treatment changes the composition of Mycobacterium tuberculosis cell envelope and alters bacterial redox status. mSystems 6(3), e00097 (2021).

Article CAS Google Scholar

Sambandan, D. et al. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. mBio 410 (2013).

Article Google Scholar

 
For Latest Updates Follow us on Google News
 

-

PREV 7% return in a year from trust hunting gold in Asia
NEXT National criteria allowing for safe reuse of site-won asphalt (road plannings) as a byproduct published by EPA